| condest {Matrix} | R Documentation | 
“Estimate”, i.e. compute approximately the CONDition number of
a (potentially large, often sparse) matrix A.
It works by apply a fast approximation of the 1-norm,
norm(A,"1"), through onenormest(.).
condest(A, t = min(n, 5), normA = norm(A, "1"),
        silent = FALSE, quiet = TRUE)
onenormest(A, t = min(n, 5), A.x, At.x, n,
           silent = FALSE, quiet = silent,
           iter.max = 10, eps = 4 * .Machine$double.eps)
| A | a square matrix, optional for  | 
| t | number of columns to use in the iterations. | 
| normA | number; (an estimate of) the 1-norm of  | 
| silent | logical indicating if warning and (by default) convergence messages should be displayed. | 
| quiet | logical indicating if convergence messages should be displayed. | 
| A.x, At.x | when  | 
| n | 
 | 
| iter.max | maximal number of iterations for the 1-norm estimator. | 
| eps | the relaive change that is deemed irrelevant. | 
Both functions return a list;
onenormest() with components,
| est | a number > 0, the estimated  | 
| v | the maximal A X column. | 
The function condest() returns a list with components,
| est | a number > 0, the estimated condition number
k.; when r := | 
| v | integer vector length  | 
| w | numeric vector, the largest A x found. | 
| iter | the number of iterations used. | 
This is based on octave's condest() and
onenormest() implementations with original author
Jason Riedy, U Berkeley; translation to R and
adaption by Martin Maechler.
Nicholas J. Higham and Françoise Tisseur (2000). A Block Algorithm for Matrix 1-Norm Estimation, with an Application to 1-Norm Pseudospectra. SIAM J. Matrix Anal. Appl. 21, 4, 1185–1201. http://dx.doi.org/10.1137/S0895479899356080
William W. Hager (1984). Condition Estimates. SIAM J. Sci. Stat. Comput. 5, 311–316.
data(KNex) mtm <- with(KNex, crossprod(mm)) system.time(ce <- condest(mtm)) ## reciprocal 1 / ce$est system.time(rc <- rcond(mtm)) # takes ca 3 x longer rc all.equal(rc, 1/ce$est) # TRUE -- the approxmation was good