Bessel {base} | R Documentation |
Bessel Functions of integer and fractional order, of first and second kind, J(nu) and Y(nu), and Modified Bessel functions (of first and third kind), I(nu) and K(nu).
besselI(x, nu, expon.scaled = FALSE) besselK(x, nu, expon.scaled = FALSE) besselJ(x, nu) besselY(x, nu)
x |
numeric, ≥ 0. |
nu |
numeric; The order (maybe fractional!) of the corresponding Bessel function. |
expon.scaled |
logical; if |
If expon.scaled = TRUE
, exp(-x) I(x;nu),
or exp(x) K(x;nu) are returned.
For nu < 0, formulae 9.1.2 and 9.6.2 from Abramowitz &
Stegun are applied (which is probably suboptimal), except for
besselK
which is symmetric in nu
.
Numeric vector of the same length of x
with the (scaled, if
expon.scaled=TRUE
) values of the corresponding Bessel function.
Original Fortran code:
W. J. Cody, Argonne National Laboratory
Translation to C and adaption to R:
Martin Maechler maechler@stat.math.ethz.ch.
The C code is a translation of Fortran routines from http://www.netlib.org/specfun/ribesl, ../rjbesl, etc.
Abramowitz, M. and Stegun, I. A. (1972) Handbook of Mathematical Functions. Dover, New York; Chapter 9: Bessel Functions of Integer Order.
Other special mathematical functions, such as
gamma
, Γ(x), and beta
,
B(x).
require(graphics) nus <- c(0:5, 10, 20) x <- seq(0, 4, length.out = 501) plot(x, x, ylim = c(0, 6), ylab = "", type = "n", main = "Bessel Functions I_nu(x)") for(nu in nus) lines(x, besselI(x, nu=nu), col = nu+2) legend(0, 6, legend = paste("nu=", nus), col = nus+2, lwd = 1) x <- seq(0, 40, length.out = 801); yl <- c(-.8, .8) plot(x, x, ylim = yl, ylab = "", type = "n", main = "Bessel Functions J_nu(x)") for(nu in nus) lines(x, besselJ(x, nu=nu), col = nu+2) legend(32,-.18, legend = paste("nu=", nus), col = nus+2, lwd = 1) ## Negative nu's : xx <- 2:7 nu <- seq(-10, 9, length.out = 2001) op <- par(lab = c(16, 5, 7)) matplot(nu, t(outer(xx, nu, besselI)), type = "l", ylim = c(-50, 200), main = expression(paste("Bessel ", I[nu](x), " for fixed ", x, ", as ", f(nu))), xlab = expression(nu)) abline(v=0, col = "light gray", lty = 3) legend(5, 200, legend = paste("x=", xx), col=seq(xx), lty=seq(xx)) par(op) x0 <- 2^(-20:10) plot(x0, x0^-8, log="xy", ylab="",type="n", main = "Bessel Functions J_nu(x) near 0\n log - log scale") for(nu in sort(c(nus, nus+.5))) lines(x0, besselJ(x0, nu=nu), col = nu+2) legend(3, 1e50, legend = paste("nu=", paste(nus, nus+.5, sep=",")), col = nus + 2, lwd = 1) plot(x0, x0^-8, log="xy", ylab="", type="n", main = "Bessel Functions K_nu(x) near 0\n log - log scale") for(nu in sort(c(nus, nus+.5))) lines(x0, besselK(x0, nu=nu), col = nu+2) legend(3, 1e50, legend = paste("nu=", paste(nus, nus+.5, sep=",")), col = nus + 2, lwd = 1) x <- x[x > 0] plot(x, x, ylim=c(1e-18, 1e11), log = "y", ylab = "", type = "n", main = "Bessel Functions K_nu(x)") for(nu in nus) lines(x, besselK(x, nu=nu), col = nu+2) legend(0, 1e-5, legend=paste("nu=", nus), col = nus+2, lwd = 1) yl <- c(-1.6, .6) plot(x, x, ylim = yl, ylab = "", type = "n", main = "Bessel Functions Y_nu(x)") for(nu in nus){ xx <- x[x > .6*nu] lines(xx, besselY(xx, nu=nu), col = nu+2) } legend(25, -.5, legend = paste("nu=", nus), col = nus+2, lwd = 1) ## negative nu in bessel_Y -- was bogus for a long time curve(besselY(x, -0.1), 0, 10, ylim = c(-3,1), ylab = '') for(nu in c(seq(-0.2, -2, by = -0.1))) curve(besselY(x, nu), add = TRUE) title(expression(besselY(x, nu) * " " * {nu == list(-0.1, -0.2, ..., -2)}))