dyn.load {base}R Documentation

Foreign Function Interface

Description

Load or unload DLLs (also known as shared objects), and test whether a C function or Fortran subroutine is available.

Usage

dyn.load(x, local = TRUE, now = TRUE, ...)
dyn.unload(x)

is.loaded(symbol, PACKAGE = "", type = "")

Arguments

x

a character string giving the pathname to a DLL, also known as a dynamic shared object. (See ‘Details’ for what these terms mean.)

local

a logical value controlling whether the symbols in the DLL are stored in their own local table and not shared across DLLs, or added to the global symbol table. Whether this has any effect is system-dependent. It is ignored on Windows.

now

a logical controlling whether all symbols are resolved (and relocated) immediately the library is loaded or deferred until they are used. This control is useful for developers testing whether a library is complete and has all the necessary symbols, and for users to ignore missing symbols. Whether this has any effect is system-dependent. It is ignored on Windows.

...

other arguments for future expansion. See section ‘Windows’ below.

symbol

a character string giving a symbol name.

PACKAGE

if supplied, confine the search for the name to the DLL given by this argument (plus the conventional extension, ‘.so’, ‘.sl’, ‘.dll’, ...). This is intended to add safety for packages, which can ensure by using this argument that no other package can override their external symbols. Use PACKAGE="base" for symbols linked in to R. This is used in the same way as in .C, .Call, .Fortran and .External functions

type

The type of symbol to look for: can be any ("", the default), "Fortran", "Call" or "External".

Details

The objects dyn.load loads are called ‘dynamically loadable libraries’ (abbreviated to ‘DLL’ on all platforms except Mac OS X, which unfortunately uses the term for a different sort of sobject. On Unix-alikes they are also called ‘dynamic shared objects’ (‘DSO’), or ‘shared objects’ for short. (The POSIX standards use ‘executable object file’, but no one else does.)

See ‘See Also’ and the ‘Writing R Extensions’ and ‘R Installation and Administration’ manuals for how to create and install a suitable DLL.

Unfortunately a very few platforms (e.g. Compaq Tru64) do not handle the PACKAGE argument correctly, and may incorrectly find symbols linked into R.

The additional arguments to dyn.load mirror the different aspects of the mode argument to the dlopen() routine on POSIX systems. They are available so that users can exercise greater control over the loading process for an individual library. In general, the default values are appropriate and you should override them only if there is good reason and you understand the implications.

External code must not change the floating point control word, but many DLLs do so. Common changes are to set it to use 53 bit precision instead of R's default 64 bit precision, or to unmask some exceptions. dyn.load detects such changes, and restores R's control word to its default value of hex 8001F. This may cause the DLL to malfunction; if so, it should be rewritten to save and restore the control word itself. If warn.FPU is set to TRUE using the options function, a warning will be printed. (If the warning says that the control word was changed from some other value than 8001F, please report the circumstances to the Windows maintainers: that probably indicates an internal bug.)

Value

The function dyn.load is used for its side effect which links the specified DLL to the executing R image. Calls to .C, .Call, .Fortran and .External can then be used to execute compiled C functions or Fortran subroutines contained in the library. The return value of dyn.load is an object of class DLLInfo. See getLoadedDLLs for information about this class.

The function dyn.unload unlinks the DLL. Note that unloading a DLL and then re-loading a DLL of the same name may or may not work: on Solaris it uses the first version loaded.

is.loaded checks if the symbol name is loaded and hence available for use in .C or .Fortran or .Call or .External. It will succeed if any one of the four calling functions would succeed in using the entry point unless type is specified. (See .Fortran for how Fortran symbols are mapped.)

Windows

The ‘standard mechanisms for loading DLLs’ include a search order for where a DLL is found (if not given as an absolute path, which is preferred), and of where its dependent DLLs will be found. This search path depends on the version of Windows and its security settings, but for versions since Windows XP SP1 it is

Packages often want to supply dependent DLLs in their ‘libs’ directory, and do this by setting the PATH variable (library.dynam does that automatically in recent versions of R), but the DLL search order means that DLLs in the launch directory and in system directories will be preferred. On Windows XP SP1 and later there is a way to modify the search order. If argument DLLpath is supplied to dyn.load, the latter makes use of the Windows system call SetDllDirectory to insert the value of DLLpath in second place, and removes the current directory, for the duration of that dyn.load call. (Note that only one directory can be inserted in this way.) On Windows 2000, the second item in the search order is the current directory, and the current directory is changed temporarily to implement DLLpath.

Warning

Do not use dyn.unload on a DLL loaded by library.dynam: use library.dynam.unload. This is needed for system housekeeping.

Note

is.loaded requires the name you would give to .C etc and not (as in S) that remapped by defunct functions symbol.C or symbol.For.

The creation of DLLs and the runtime linking of them into executing programs is very platform dependent. In recent years there has been some simplification in the process because the C subroutine call dlopen has become the POSIX standard for doing this. Under Unix-alikes dyn.load uses the dlopen mechanism and should work on all platforms which support it. On Windows it uses the standard mechanism (LoadLibrary) for loading DLLs.

The original code for loading DLLs in Unix-alikes was provided by Heiner Schwarte.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth & Brooks/Cole.

See Also

library.dynam to be used inside a package's .onLoad initialization.

SHLIB for how to create suitable DLLs.

.C, .Fortran, .External, .Call.

Examples

is.loaded("hcass2") #-> probably TRUE, as stats is loaded
is.loaded("supsmu") # Fortran entry point in stats
is.loaded("supsmu", "stats", "Fortran")
is.loaded("PDF", type = "External")

[Package base version 2.15.1 Index]