ght {fBasics} | R Documentation |
Density, distribution function, quantile function and random generation for the hyperbolic distribution.
dght(x, beta = 0.1, delta = 1, mu = 0, nu = 10, log = FALSE) pght(q, beta = 0.1, delta = 1, mu = 0, nu = 10) qght(p, beta = 0.1, delta = 1, mu = 0, nu = 10) rght(n, beta = 0.1, delta = 1, mu = 0, nu = 10)
beta, delta, mu |
numeric values.
|
nu |
a numeric value, the number of degrees of freedom.
Note, |
x, q |
a numeric vector of quantiles. |
p |
a numeric vector of probabilities. |
n |
number of observations. |
log |
a logical, if TRUE, probabilities |
All values for the *ght
functions are numeric vectors:
d*
returns the density,
p*
returns the distribution function,
q*
returns the quantile function, and
r*
generates random deviates.
All values have attributes named "param"
listing
the values of the distributional parameters.
Atkinson, A.C. (1982); The simulation of generalized inverse Gaussian and hyperbolic random variables, SIAM J. Sci. Stat. Comput. 3, 502–515.
Barndorff-Nielsen O. (1977); Exponentially decreasing distributions for the logarithm of particle size, Proc. Roy. Soc. Lond., A353, 401–419.
Barndorff-Nielsen O., Blaesild, P. (1983); Hyperbolic distributions. In Encyclopedia of Statistical Sciences, Eds., Johnson N.L., Kotz S. and Read C.B., Vol. 3, pp. 700–707. New York: Wiley.
Raible S. (2000); Levy Processes in Finance: Theory, Numerics and Empirical Facts, PhD Thesis, University of Freiburg, Germany, 161 pages.
## ght - #