gldFit {fBasics} | R Documentation |
Estimates the distrinbutional parameters for a generalized lambda distribution.
gldFit(x, lambda1 = 0, lambda2 = -1, lambda3 = -1/8, lambda4 = -1/8, method = c("mle", "mps", "gof", "hist", "rob"), scale = NA, doplot = TRUE, add = FALSE, span = "auto", trace = TRUE, title = NULL, description = NULL, ...)
x |
a numeric vector. |
lambda1, lambda2, lambda3, lambda4 |
are numeric values where
|
method |
a character string, the estimation approach to fit the distributional parameters, see details. |
scale |
not used. |
doplot |
a logical flag. Should a plot be displayed? |
add |
a logical flag. Should a new fit added to an existing plot? |
span |
x-coordinates for the plot, by default 100 values
automatically selected and ranging between the 0.001,
and 0.999 quantiles. Alternatively, you can specify
the range by an expression like |
trace |
a logical flag. Should the parameter estimation process be traced? |
title |
a character string which allows for a project title. |
description |
a character string which allows for a brief description. |
... |
parameters to be parsed. |
The function nlminb
is used to minimize the objective
function. The following approaches have been implemented:
"mle"
, maximimum log likelihoo estimation.
"mps"
, maximum product spacing estimation.
"gof"
, goodness of fit approaches,
type="ad"
Anderson-Darling,
type="cvm"
Cramer-vonMise,
type="ks"
Kolmogorov-Smirnov.
"hist"
, histogram binning approaches,
"fd"
Freedman-Diaconis binning,
"scott"
, Scott histogram binning,
"sturges"
, Sturges histogram binning.
"rob"
, robust moment matching.
returns a list with the following components:
estimate |
the point at which the maximum value of the log liklihood function is obtained. |
minimum |
the value of the estimated maximum, i.e. the value of the log liklihood function. |
code |
an integer indicating why the optimization process terminated. |
gradient |
the gradient at the estimated maximum. |
steps |
number of function calls. |
## gldFit - # Simulate Random Variates: set.seed(1953) s = rgld(n = 1000, lambda1=0, lambda2=-1, lambda3=-1/8, lambda4=-1/8) ## gldFit - # Fit Parameters: gldFit(s, lambda1=0, lambda2=-1, lambda3=-1/8, lambda4=-1/8, doplot = TRUE, trace = TRUE)