sgh {fBasics} | R Documentation |
Density, distribution function, quantile function and random generation for the standardized generalized hyperbolic distribution.
dsgh(x, zeta = 1, rho = 0, lambda = 1, log = FALSE) psgh(q, zeta = 1, rho = 0, lambda = 1) qsgh(p, zeta = 1, rho = 0, lambda = 1) rsgh(n, zeta = 1, rho = 0, lambda = 1)
zeta, rho, lambda |
shape parameter |
log |
a logical flag by default |
n |
number of observations. |
p |
a numeric vector of probabilities. |
x, q |
a numeric vector of quantiles. |
The generator rsgh
is based on the GH algorithm given
by Scott (2004).
All values for the *sgh
functions are numeric vectors:
d*
returns the density,
p*
returns the distribution function,
q*
returns the quantile function, and
r*
generates random deviates.
All values have attributes named "param"
listing
the values of the distributional parameters.
Diethelm Wuertz.
## rsgh - set.seed(1953) r = rsgh(5000, zeta = 1, rho = 0.5, lambda = 1) plot(r, type = "l", col = "steelblue", main = "gh: zeta=1 rho=0.5 lambda=1") ## dsgh - # Plot empirical density and compare with true density: hist(r, n = 50, probability = TRUE, border = "white", col = "steelblue", ylim = c(0, 0.6)) x = seq(-5, 5, length = 501) lines(x, dsgh(x, zeta = 1, rho = 0.5, lambda = 1)) ## psgh - # Plot df and compare with true df: plot(sort(r), (1:5000/5000), main = "Probability", col = "steelblue") lines(x, psgh(x, zeta = 1, rho = 0.5, lambda = 1)) ## qsgh - # Compute Quantiles: round(qsgh(psgh(seq(-5, 5, 1), zeta = 1, rho = 0.5), zeta = 1, rho = 0.5), 4)