| sgh {fBasics} | R Documentation |
Density, distribution function, quantile function and random generation for the standardized generalized hyperbolic distribution.
dsgh(x, zeta = 1, rho = 0, lambda = 1, log = FALSE) psgh(q, zeta = 1, rho = 0, lambda = 1) qsgh(p, zeta = 1, rho = 0, lambda = 1) rsgh(n, zeta = 1, rho = 0, lambda = 1)
zeta, rho, lambda |
shape parameter |
log |
a logical flag by default |
n |
number of observations. |
p |
a numeric vector of probabilities. |
x, q |
a numeric vector of quantiles. |
The generator rsgh is based on the GH algorithm given
by Scott (2004).
All values for the *sgh functions are numeric vectors:
d* returns the density,
p* returns the distribution function,
q* returns the quantile function, and
r* generates random deviates.
All values have attributes named "param" listing
the values of the distributional parameters.
Diethelm Wuertz.
## rsgh -
set.seed(1953)
r = rsgh(5000, zeta = 1, rho = 0.5, lambda = 1)
plot(r, type = "l", col = "steelblue",
main = "gh: zeta=1 rho=0.5 lambda=1")
## dsgh -
# Plot empirical density and compare with true density:
hist(r, n = 50, probability = TRUE, border = "white", col = "steelblue",
ylim = c(0, 0.6))
x = seq(-5, 5, length = 501)
lines(x, dsgh(x, zeta = 1, rho = 0.5, lambda = 1))
## psgh -
# Plot df and compare with true df:
plot(sort(r), (1:5000/5000), main = "Probability", col = "steelblue")
lines(x, psgh(x, zeta = 1, rho = 0.5, lambda = 1))
## qsgh -
# Compute Quantiles:
round(qsgh(psgh(seq(-5, 5, 1), zeta = 1, rho = 0.5), zeta = 1, rho = 0.5), 4)