snig {fBasics} | R Documentation |
Density, distribution function, quantile function and random generation for the standardized normal inverse Gaussian distribution.
dsnig(x, zeta = 1, rho = 0, log = FALSE) psnig(q, zeta = 1, rho = 0) qsnig(p, zeta = 1, rho = 0) rsnig(n, zeta = 1, rho = 0)
zeta, rho |
shape parameter |
log |
a logical flag by default |
n |
number of observations. |
p |
a numeric vector of probabilities. |
x, q |
a numeric vector of quantiles. |
The random deviates are calculated with the method described by Raible (2000).
All values for the *snig
functions are numeric vectors:
d*
returns the density,
p*
returns the distribution function,
q*
returns the quantile function, and
r*
generates random deviates.
All values have attributes named "param"
listing
the values of the distributional parameters.
Diethelm Wuertz.
## snig - set.seed(1953) r = rsnig(5000, zeta = 1, rho = 0.5) plot(r, type = "l", col = "steelblue", main = "snig: zeta=1 rho=0.5") ## snig - # Plot empirical density and compare with true density: hist(r, n = 50, probability = TRUE, border = "white", col = "steelblue") x = seq(-5, 5, length = 501) lines(x, dsnig(x, zeta = 1, rho = 0.5)) ## snig - # Plot df and compare with true df: plot(sort(r), (1:5000/5000), main = "Probability", col = "steelblue") lines(x, psnig(x, zeta = 1, rho = 0.5)) ## snig - # Compute Quantiles: qsnig(psnig(seq(-5, 5, 1), zeta = 1, rho = 0.5), zeta = 1, rho = 0.5)