| snig {fBasics} | R Documentation | 
Density, distribution function, quantile function and random generation for the standardized normal inverse Gaussian distribution.
dsnig(x, zeta = 1, rho = 0, log = FALSE) psnig(q, zeta = 1, rho = 0) qsnig(p, zeta = 1, rho = 0) rsnig(n, zeta = 1, rho = 0)
| zeta, rho | shape parameter  | 
| log | a logical flag by default  | 
| n | number of observations. | 
| p | a numeric vector of probabilities. | 
| x, q | a numeric vector of quantiles. | 
The random deviates are calculated with the method described by Raible (2000).
All values for the *snig functions are numeric vectors: 
d* returns the density,
p* returns the distribution function,
q* returns the quantile function, and
r* generates random deviates.
All values have attributes named "param" listing
the values of the distributional parameters.
Diethelm Wuertz.
   
## snig -
   set.seed(1953)
   r = rsnig(5000, zeta = 1, rho = 0.5)
   plot(r, type = "l", col = "steelblue",
     main = "snig: zeta=1 rho=0.5")
 
## snig - 
   # Plot empirical density and compare with true density:
   hist(r, n = 50, probability = TRUE, border = "white", col = "steelblue")
   x = seq(-5, 5, length = 501)
   lines(x, dsnig(x, zeta = 1, rho = 0.5))
 
## snig -  
   # Plot df and compare with true df:
   plot(sort(r), (1:5000/5000), main = "Probability", col = "steelblue")
   lines(x, psnig(x, zeta = 1, rho = 0.5))
   
## snig -
   # Compute Quantiles:
   qsnig(psnig(seq(-5, 5, 1), zeta = 1, rho = 0.5), zeta = 1, rho = 0.5)