| garchSpec {fGarch} | R Documentation |
Specifies an univariate GARCH time series model.
garchSpec(model = list(), presample = NULL,
cond.dist = c("norm", "ged", "std", "snorm", "sged", "sstd"),
rseed = NULL)
cond.dist |
a character string naming the desired conditional distribution.
Valid values are |
model |
a list of GARCH model parameters: |
presample |
a numeric three column matrix with start values for the series, for the innovations, and for the conditional variances. For an ARMA(m,n)-GARCH(p,q) process the number of rows must be at least max(m,n,p,q)+1, longer presamples are cutted. Note, all presamples are initialized by a normal-GARCH(p,q) process. |
rseed |
single integer argument, the seed for the intitialization of
the random number generator for the innovations. Using the
default value |
The function garchSpec specifies a GARCH or APARCH time
series process which we can use for simulating artificial GARCH
and/or APARCH models. This is very useful for testing the
GARCH parameter estimation results, since your model parameters
are known and well specified.
For example specifying a subet AR(5[1,5])-GARCH(2,1) model with a standardized Student-t distribution with four degrees of freedom will return the following printed output:
garchSpec(model = list(ar = c(0.5,0,0,0,0.1), alpha =
c(0.1, 0.1), beta = 0.75, shape = 4), cond.dist = "std")
Formula:
~ ar(5) + garch(2, 1)
Model:
ar: 0.5 0 0 0 0.1
omega: 1e-06
alpha: 0.1 0.1
beta: 0.75
Distribution:
std
Distributional Parameter:
nu = 4
Presample:
time z h y
0 0 -0.3262334 2e-05 0
-1 -1 1.3297993 2e-05 0
-2 -2 1.2724293 2e-05 0
-3 -3 0.4146414 2e-05 0
-4 -4 -1.5399500 2e-05 0
The "Formula" describes the formula expression specifying the
generating process, "Model" lists the associated model parameters,
"Distribution" the type of the conditional distribution function
in use, "Distributional Parmeters" lists the distributional
parameter (if any), and the "Presample' shows the presample
input matrix.
If we have specified presample=NULL in the argument list,
then the presample is generated automatically by default as
norm-AR()-GARCH() process.
The returned value is an object of class "fGARCHSPEC".
Diethelm Wuertz for the Rmetrics R-port.
## garchSpec -
# Normal Conditional Distribution:
spec = garchSpec()
spec
# Skewed Normal Conditional Distribution:
spec = garchSpec(model = list(skew = 0.8), cond.dist = "snorm")
spec
# Skewed GED Conditional Distribution:
spec = garchSpec(model = list(skew = 0.9, shape = 4.8), cond.dist = "sged")
spec
## More specifications ...
# Default GARCH(1,1) - uses default parameter settings
garchSpec(model = list())
# ARCH(2) - use default omega and specify alpha, set beta=0!
garchSpec(model = list(alpha = c(0.2, 0.4), beta = 0))
# AR(1)-ARCH(2) - use default mu, omega
garchSpec(model = list(ar = 0.5, alpha = c(0.3, 0.4), beta = 0))
# AR([1,5])-GARCH(1,1) - use default garch values and subset ar[.]
garchSpec(model = list(mu = 0.001, ar = c(0.5,0,0,0,0.1)))
# ARMA(1,2)-GARCH(1,1) - use default garch values
garchSpec(model = list(ar = 0.5, ma = c(0.3, -0.3)))
# GARCH(1,1) - use default omega and specify alpha/beta
garchSpec(model = list(alpha = 0.2, beta = 0.7))
# GARCH(1,1) - specify omega/alpha/beta
garchSpec(model = list(omega = 1e-6, alpha = 0.1, beta = 0.8))
# GARCH(1,2) - use default omega and specify alpha[1]/beta[2]
garchSpec(model = list(alpha = 0.1, beta = c(0.4, 0.4)))
# GARCH(2,1) - use default omega and specify alpha[2]/beta[1]
garchSpec(model = list(alpha = c(0.12, 0.04), beta = 0.08))
# snorm-ARCH(1) - use defaults with skew Normal
garchSpec(model = list(beta = 0, skew = 0.8), cond.dist = "snorm")
# sged-GARCH(1,1) - using defaults with skew GED
garchSpec(model = list(skew = 0.93, shape = 3), cond.dist = "sged")
# Taylor Schwert GARCH(1,1) - this belongs to the family of APARCH Models
garchSpec(model = list(delta = 1))
# AR(1)-t-APARCH(2, 1) - a little bit more complex specification ...
garchSpec(model = list(mu = 1.0e-4, ar = 0.5, omega = 1.0e-6,
alpha = c(0.10, 0.05), gamma = c(0, 0), beta = 0.8, delta = 1.8,
shape = 4, skew = 0.85), cond.dist = "sstd")