summary-methods {fGarch} | R Documentation |
Summary methods for GARCH Modelling.
Generic function
Summary function for objects of class "fGARCH"
.
The first five sections return the title, the call, the mean and variance formula, the conditional distribution and the type of standard errors:
Title: GARCH Modelling Call: garchFit(~ garch(1, 1), data = garchSim(), trace = FALSE) Mean and Variance Equation: ~arch(0) Conditional Distribution: norm Std. Errors: based on HessianThe next three sections return the estimated coefficients, and an error analysis including standard errors, t values, and probabilities, as well as the log Likelihood values from optimization:
Coefficient(s): mu omega alpha1 beta1 -5.79788e-05 7.93017e-06 1.59456e-01 2.30772e-01 Error Analysis: Estimate Std. Error t value Pr(>|t|) mu -5.798e-05 2.582e-04 -0.225 0.822 omega 7.930e-06 5.309e-06 1.494 0.135 alpha1 1.595e-01 1.026e-01 1.554 0.120 beta1 2.308e-01 4.203e-01 0.549 0.583 Log Likelihood: -843.3991 normalized: -InfThe next section provides results on standardized residuals tests, including statistic and p values, and on information criterion statistic including AIC, BIC, SIC, and HQIC:
Standardized Residuals Tests: Statistic p-Value Jarque-Bera Test R Chi^2 0.4172129 0.8117146 Shapiro-Wilk Test R W 0.9957817 0.8566985 Ljung-Box Test R Q(10) 13.05581 0.2205680 Ljung-Box Test R Q(15) 14.40879 0.4947788 Ljung-Box Test R Q(20) 38.15456 0.008478302 Ljung-Box Test R^2 Q(10) 7.619134 0.6659837 Ljung-Box Test R^2 Q(15) 13.89721 0.5333388 Ljung-Box Test R^2 Q(20) 15.61716 0.7400728 LM Arch Test R TR^2 7.049963 0.8542942 Information Criterion Statistics: AIC BIC SIC HQIC 8.473991 8.539957 8.473212 8.500687
Diethelm Wuertz for the Rmetrics R-port.
## garchSim - x = garchSim(n = 200) ## garchFit - fit = garchFit(formula = x ~ garch(1, 1), data = x, trace = FALSE) summary(fit)