sged {fGarch} | R Documentation |
Functions to compute density, distribution function,
quantile function and to generate random variates
for the generalized error distribution. In
addition maximum likelihood estimators are available
to fit the parameters of the distribution.
The functions are:
[dpqr]ged | Symmetric GED Distribution, |
[dpqr]sged | Skew GED Distribution, |
gedFit | MLE parameter fit for a GED distribution, |
sgedFit | MLE parameter fit for a skew GED distribution, |
sgedSlider | Displays interactively skew GED distribution. |
dged(x, mean = 0, sd = 1, nu = 2) pged(q, mean = 0, sd = 1, nu = 2) qged(p, mean = 0, sd = 1, nu = 2) rged(n, mean = 0, sd = 1, nu = 2) dsged(x, mean = 0, sd = 1, nu = 2, xi = 1.5) psged(q, mean = 0, sd = 1, nu = 2, xi = 1.5) qsged(p, mean = 0, sd = 1, nu = 2, xi = 1.5) rsged(n, mean = 0, sd = 1, nu = 2, xi = 1.5) gedFit(x, ...) sgedFit(x, ...) sgedSlider(type = c("dist", "rand"))
mean, sd, nu, xi |
location parameter |
n |
the number of observations. |
p |
a numeric vector of probabilities. |
type |
a character string denoting which interactive plot should
be displayed. Either a distribution plot |
x, q |
a numeric vector of quantiles. |
... |
parameters parsed to the optimization function |
Parameter Estimation:
The function nlm
is used to minimize the "negative" maximum
log-likelihood function. nlm
carries out a minimization using
a Newton-type algorithm.
d*
returns the density,
p*
returns the distribution function,
q*
returns the quantile function, and
r*
generates random deviates,
all values are numeric vectors.
[s]gedFit
returns a list with the following components:
par |
The best set of parameters found. |
objective |
The value of objective corresponding to |
convergence |
An integer code. 0 indicates successful convergence. |
message |
A character string giving any additional information returned by the optimizer, or NULL. For details, see PORT documentation. |
iterations |
Number of iterations performed. |
evaluations |
Number of objective function and gradient function evaluations. |
Diethelm Wuertz for the Rmetrics R-port.
Nelson D.B. (1991); Conditional Heteroscedasticity in Asset Returns: A New Approach, Econometrica, 59, 347–370.
Fernandez C., Steel M.F.J. (2000); On Bayesian Modelling of Fat Tails and Skewness, Preprint, 31 pages.
## sged - par(mfrow = c(2, 2)) set.seed(1953) r = rsged(n = 1000) plot(r, type = "l", main = "sged", col = "steelblue") # Plot empirical density and compare with true density: hist(r, n = 25, probability = TRUE, border = "white", col = "steelblue") box() x = seq(min(r), max(r), length = 201) lines(x, dsged(x), lwd = 2) # Plot df and compare with true df: plot(sort(r), (1:1000/1000), main = "Probability", col = "steelblue", ylab = "Probability") lines(x, psged(x), lwd = 2) # Compute quantiles: round(qsged(psged(q = seq(-1, 5, by = 1))), digits = 6) ## sgedFit - sgedFit(r) ## Not run: ## sgedSlider - if (require(tcltk)) { sgedSlider("dist") sgedSlider("rand") } ## End(Not run)