bats {forecast} | R Documentation |
Fits a BATS model applied to y
, as described in De Livera, Hyndman & Snyder (2011).
Parallel processing is used by default to speed up the computatons.
bats(y, use.box.cox=NULL, use.trend=NULL, use.damped.trend=NULL, seasonal.periods=NULL, use.arma.errors=TRUE, use.parallel=TRUE, num.cores=NULL, bc.lower=0, bc.upper=1, ...)
y |
The time series to be forecast. Can be |
use.box.cox |
|
use.trend |
|
use.damped.trend |
|
seasonal.periods |
If |
use.arma.errors |
|
use.parallel |
|
num.cores |
The number of parallel processes to be used if using parallel processing. If |
bc.lower |
The lower limit (inclusive) for the Box-Cox transformation. |
bc.upper |
The upper limit (inclusive) for the Box-Cox transformation. |
... |
Additional parameters to be passed to |
An object of class "bats
". The generic accessor functions fitted.values
and residuals
extract useful features of
the value returned by bats
and associated functions.
Slava Razbash and Rob J Hyndman
De Livera, A.M., Hyndman, R.J., & Snyder, R. D. (2011), Forecasting time series with complex seasonal patterns using exponential smoothing, Journal of the American Statistical Association, 106(496), 1513-1527.
fit <- bats(USAccDeaths) plot(forecast(fit)) ## Not run: taylor.fit <- bats(taylor) plot(forecast(taylor.fit)) ## End(Not run)