| predict.ssllrm {gss} | R Documentation | 
Evaluate conditional density in a log-linear regression model fit at arbitrary x, or contrast of log conditional density possibly with standard errors for constructing Bayesian confidence intervals.
## S3 method for class 'ssllrm' predict(object, x, y=object$qd.pt, odds=NULL, se.odds=FALSE, ...)
object | 
 Object of class   | 
x | 
 Data frame of x values.  | 
y | 
 Data frame of y values; y-variables must be factors.  | 
odds | 
 Optional coefficients of contrast.  | 
se.odds | 
 Flag indicating if standard errors are required.
Ignored when   | 
... | 
 Ignored.  | 
For odds=NULL, predict.ssanova returns a vector/matrix
of the estimated f(y|x).
When odds is given, it should match y in length and
the coefficients must add to zero; predict.ssanova then
returns a vector of estimated "odds ratios" if se.odds=FALSE
or a list consisting of the following components if
se.odds=TRUE.
fit | 
 Vector of evaluated fit.  | 
se.fit | 
 Vector of standard errors.  | 
Chong Gu, chong@stat.purdue.edu
Fitting function ssllrm.