plot.gam {mgcv} | R Documentation |
Takes a fitted gam
object produced by gam()
and plots the
component smooth functions that make it up, on the scale of the linear
predictor. Optionally produces term plots for parametric model components
as well.
## S3 method for class 'gam' plot(x,residuals=FALSE,rug=TRUE,se=TRUE,pages=0,select=NULL,scale=-1, n=100,n2=40,pers=FALSE,theta=30,phi=30,jit=FALSE,xlab=NULL, ylab=NULL,main=NULL,ylim=NULL,xlim=NULL,too.far=0.1, all.terms=FALSE,shade=FALSE,shade.col="gray80", shift=0,trans=I,seWithMean=FALSE,by.resids=FALSE, scheme=0,...)
x |
a fitted |
residuals |
If |
rug |
when TRUE (default) then the covariate to which the plot applies is displayed as a rug plot at the foot of each plot of a 1-d smooth, and the locations of the covariates are plotted as points on the contour plot representing a 2-d smooth. |
se |
when TRUE (default) upper and lower lines are added to the
1-d plots at 2 standard errors
above and below the estimate of the smooth being plotted while for
2-d plots, surfaces at +1 and -1 standard errors are contoured
and overlayed on the contour plot for the estimate. If a
positive number is supplied then this number is multiplied by
the standard errors when calculating standard error curves or
surfaces. See also |
pages |
(default 0) the number of pages over which to spread the output. For example,
if |
select |
Allows the plot for a single model term to be selected for printing. e.g. if you just want the plot for the second smooth term set |
scale |
set to -1 (default) to have the same y-axis scale for each plot, and to 0 for a
different y axis for each plot. Ignored if |
n |
number of points used for each 1-d plot - for a nice smooth plot this needs to be several times the estimated degrees of freedom for the smooth. Default value 100. |
n2 |
Square root of number of points used to grid estimates of 2-d functions for contouring. |
pers |
Set to |
theta |
One of the perspective plot angles. |
phi |
The other perspective plot angle. |
jit |
Set to TRUE if you want rug plots for 1-d terms to be jittered. |
xlab |
If supplied then this will be used as the x label for all plots. |
ylab |
If supplied then this will be used as the y label for all plots. |
main |
Used as title (or z axis label) for plots if supplied. |
ylim |
If supplied then this pair of numbers are used as the y limits for each plot. |
xlim |
If supplied then this pair of numbers are used as the x limits for each plot. |
too.far |
If greater than 0 then this is used to determine when a location is too
far from data to be plotted when plotting 2-D smooths. This is useful since smooths tend to go wild away from data.
The data are scaled into the unit square before deciding what to exclude, and |
all.terms |
if set to |
shade |
Set to |
shade.col |
define the color used for shading confidence bands. |
shift |
constant to add to each smooth (on the scale of the linear
predictor) before plotting. Can be useful for some diagnostics, or with |
trans |
function to apply to each smooth (after any shift), before
plotting. |
seWithMean |
if |
by.resids |
Should partial residuals be plotted for terms with |
scheme |
Integer or integer vector selecting a plotting scheme for each plot. See details. |
... |
other graphics parameters to pass on to plotting commands. |
Produces default plot showing the smooth components of a
fitted GAM, and optionally parametric terms as well, when these can be
handled by termplot
.
For smooth terms plot.gam
actually calls plot method functions depending on the
class of the smooth. Currently random.effects
, Markov random fields (mrf
),
Spherical.Spline
and
factor.smooth.interaction
terms have special methods (documented in their help files),
the rest use the defaults described below.
For plots of 1-d smooths, the x axis of each plot is labelled
with the covariate name, while the y axis is labelled s(cov,edf)
where cov
is the covariate name, and edf
the estimated (or user defined for regression splines)
degrees of freedom of the smooth. scheme == 0
produces a smooth curve with dashed curves
indicating 2 standard error bounds. scheme == 1
illustrates the error bounds using a shaded
region.
For scheme==0
, contour plots are produced for 2-d smooths with the x-axes labelled with the first covariate
name and the y axis with the second covariate name. The main title of
the plot is something like s(var1,var2,edf)
, indicating the
variables of which the term is a function, and the estimated degrees of
freedom for the term. When se=TRUE
, estimator variability is shown by overlaying
contour plots at plus and minus 1 s.e. relative to the main
estimate. If se
is a positive number then contour plots are at plus or minus se
multiplied
by the s.e. Contour levels are chosen to try and ensure reasonable
separation of the contours of the different plots, but this is not
always easy to achieve. Note that these plots can not be modified to the same extent as the other plot.
For 2-d smooths scheme==1
produces a perspective plot, while scheme==2
produces a heatmap,
with overlaid contours.
Smooths of more than 2 variables are not plotted, but see vis.gam
.
Fine control of plots for parametric terms can be obtained by calling
termplot
directly, taking care to use its terms
argument.
Note that, if seWithMean=TRUE
, the confidence bands include the uncertainty about the overall mean. In other words
although each smooth is shown centred, the confidence bands are obtained as if every other term in the model was
constrained to have average 0, (average taken over the covariate values), except for the smooth concerned. This seems to correspond more closely to how most users interpret componentwise intervals in practice, and also results in intervals with
close to nominal (frequentist) coverage probabilities by an extension of Nychka's (1988) results presented in Marra and Wood (2012).
Sometimes you may want a small change to a default plot, and the arguments to plot.gam
just won't let you do it.
In this case, the quickest option is sometimes to clone the smooth.construct
and Predict.matrix
methods for
the smooth concerned, modifying only the returned smoother class (e.g. to foo.smooth
).
Then copy the plot method function for the original class (e.g. mgcv:::plot.mgcv.smooth
), modify the source code to plot exactly as you want and rename the plot method function (e.g. plot.foo.smooth
). You can then use the cloned
smooth in models (e.g. s(x,bs="foo")
), and it will automatically plot using the modified plotting function.
The function simply generates plots.
Note that the behaviour of this function is not identical to
plot.gam()
in S-PLUS.
Plots of 2-D smooths with standard error contours shown can not easily be customized.
The function can not deal with smooths of more than 2 variables!
Simon N. Wood simon.wood@r-project.org
Henric Nilsson henric.nilsson@statisticon.se donated the code for the shade
option.
The design is inspired by the S function of the same name described in Chambers and Hastie (1993) (but is not a clone).
Chambers and Hastie (1993) Statistical Models in S. Chapman & Hall.
Marra, G and S.N. Wood (2012) Coverage Properties of Confidence Intervals for Generalized Additive Model Components. Scandinavian Journal of Statistics.
Nychka (1988) Bayesian Confidence Intervals for Smoothing Splines. Journal of the American Statistical Association 83:1134-1143.
Wood S.N. (2006) Generalized Additive Models: An Introduction with R. Chapman and Hall/CRC Press.
library(mgcv) set.seed(0) ## fake some data... f1 <- function(x) {exp(2 * x)} f2 <- function(x) { 0.2*x^11*(10*(1-x))^6+10*(10*x)^3*(1-x)^10 } f3 <- function(x) {x*0} n<-200 sig2<-4 x0 <- rep(1:4,50) x1 <- runif(n, 0, 1) x2 <- runif(n, 0, 1) x3 <- runif(n, 0, 1) e <- rnorm(n, 0, sqrt(sig2)) y <- 2*x0 + f1(x1) + f2(x2) + f3(x3) + e x0 <- factor(x0) ## fit and plot... b<-gam(y~x0+s(x1)+s(x2)+s(x3)) plot(b,pages=1,residuals=TRUE,all.terms=TRUE,shade=TRUE,shade.col=2) plot(b,pages=1,seWithMean=TRUE) ## better coverage intervals ## just parametric term alone... termplot(b,terms="x0",se=TRUE) ## more use of color... op <- par(mfrow=c(2,2),bg="blue") x <- 0:1000/1000 for (i in 1:3) { plot(b,select=i,rug=FALSE,col="green", col.axis="white",col.lab="white",all.terms=TRUE) for (j in 1:2) axis(j,col="white",labels=FALSE) box(col="white") eval(parse(text=paste("fx <- f",i,"(x)",sep=""))) fx <- fx-mean(fx) lines(x,fx,col=2) ## overlay `truth' in red } par(op) ## example with 2-d plots, and use of schemes... b1 <- gam(y~x0+s(x1,x2)+s(x3)) op <- par(mfrow=c(2,2)) plot(b1,all.terms=TRUE) par(op) op <- par(mfrow=c(2,2)) plot(b1,all.terms=TRUE,scheme=1) par(op) op <- par(mfrow=c(2,2)) plot(b1,all.terms=TRUE,scheme=c(2,1)) par(op)