| corAR1 {nlme} | R Documentation | 
This function is a constructor for the corAR1 class,
representing an autocorrelation structure of order 1. Objects
created using this constructor must later be initialized using the
appropriate Initialize method. 
corAR1(value, form, fixed)
value | 
 the value of the lag 1 autocorrelation, which must be between -1 and 1. Defaults to 0 (no autocorrelation).  | 
form | 
 a one sided formula of the form   | 
fixed | 
 an optional logical value indicating whether the
coefficients should be allowed to vary in the optimization, or kept
fixed at their initial value. Defaults to   | 
an object of class corAR1, representing an autocorrelation
structure of order 1. 
Jose Pinheiro and Douglas Bates bates@stat.wisc.edu
Box, G.E.P., Jenkins, G.M., and Reinsel G.C. (1994) "Time Series Analysis: Forecasting and Control", 3rd Edition, Holden-Day.
Pinheiro, J.C., and Bates, D.M. (2000) "Mixed-Effects Models in S and S-PLUS", Springer, esp. pp. 235, 397.
ACF.lme,
corARMA, 
corClasses,
Dim.corSpatial, 
Initialize.corStruct, 
summary.corStruct
## covariate is observation order and grouping factor is Mare
cs1 <- corAR1(0.2, form = ~ 1 | Mare)
# Pinheiro and Bates, p. 236
cs1AR1 <- corAR1(0.8, form = ~ 1 | Subject)
cs1AR1. <- Initialize(cs1AR1, data = Orthodont)
corMatrix(cs1AR1.)
# Pinheiro and Bates, p. 240
fm1Ovar.lme <- lme(follicles ~ sin(2*pi*Time) + cos(2*pi*Time),
                   data = Ovary, random = pdDiag(~sin(2*pi*Time)))
fm2Ovar.lme <- update(fm1Ovar.lme, correlation = corAR1())
# Pinheiro and Bates, pp. 255-258:  use in gls
fm1Dial.gls <-
  gls(rate ~(pressure + I(pressure^2) + I(pressure^3) + I(pressure^4))*QB,
      Dialyzer)
fm2Dial.gls <- update(fm1Dial.gls,
                 weights = varPower(form = ~ pressure))
fm3Dial.gls <- update(fm2Dial.gls,
                    corr = corAR1(0.771, form = ~ 1 | Subject))
# Pinheiro and Bates use in nlme:  
# from p. 240 needed on p. 396
fm1Ovar.lme <- lme(follicles ~ sin(2*pi*Time) + cos(2*pi*Time),
                   data = Ovary, random = pdDiag(~sin(2*pi*Time)))
fm5Ovar.lme <- update(fm1Ovar.lme,
                corr = corARMA(p = 1, q = 1))
# p. 396
fm1Ovar.nlme <- nlme(follicles~
     A+B*sin(2*pi*w*Time)+C*cos(2*pi*w*Time),
   data=Ovary, fixed=A+B+C+w~1,
   random=pdDiag(A+B+w~1),
   start=c(fixef(fm5Ovar.lme), 1) )
# p. 397
fm2Ovar.nlme <- update(fm1Ovar.nlme,
         corr=corAR1(0.311) )