Support for Parallel computation in R


[Up] [Top]

Documentation for package ‘parallel’ version 2.15.1

Help Pages

parallel-package Support for Parallel Computation
clusterApply Apply Operations using Clusters
clusterApplyLB Apply Operations using Clusters
clusterCall Apply Operations using Clusters
clusterEvalQ Apply Operations using Clusters
clusterExport Apply Operations using Clusters
clusterMap Apply Operations using Clusters
clusterSetRNGStream Implementation of Pierre L'Ecuyer's RngStreams
clusterSplit Apply Operations using Clusters
detectCores Detect the Number of CPU Cores
makeCluster Create a Parallel Socket Cluster
makeForkCluster Create a Parallel Socket Cluster
makePSOCKcluster Create a Parallel Socket Cluster
mc.reset.stream Implementation of Pierre L'Ecuyer's RngStreams
mclapply Serial versions of 'mclapply', 'mcmapply' and 'pvec'
mcMap Serial versions of 'mclapply', 'mcmapply' and 'pvec'
mcmapply Serial versions of 'mclapply', 'mcmapply' and 'pvec'
nextRNGStream Implementation of Pierre L'Ecuyer's RngStreams
nextRNGSubStream Implementation of Pierre L'Ecuyer's RngStreams
parallel Support for Parallel Computation
parApply Apply Operations using Clusters
parCapply Apply Operations using Clusters
parLapply Apply Operations using Clusters
parLapplyLB Apply Operations using Clusters
parRapply Apply Operations using Clusters
parSapply Apply Operations using Clusters
parSapplyLB Apply Operations using Clusters
pvec Serial versions of 'mclapply', 'mcmapply' and 'pvec'
setDefaultCluster Create a Parallel Socket Cluster
splitIndices Divide Tasks for Distribution in a Cluster
stopCluster Create a Parallel Socket Cluster