ecdf {stats} | R Documentation |
Compute an empirical cumulative distribution function, with several methods for plotting, printing and computing with such an “ecdf” object.
ecdf(x) ## S3 method for class 'ecdf' plot(x, ..., ylab="Fn(x)", verticals = FALSE, col.01line = "gray70", pch = 19) ## S3 method for class 'ecdf' print(x, digits= getOption("digits") - 2, ...) ## S3 method for class 'ecdf' summary(object, ...) ## S3 method for class 'ecdf' quantile(x, ...)
x, object |
numeric vector of the observations for |
... |
arguments to be passed to subsequent methods, e.g.,
|
ylab |
label for the y-axis. |
verticals |
see |
col.01line |
numeric or character specifying the color of the
horizontal lines at y = 0 and 1, see |
pch |
plotting character. |
digits |
number of significant digits to use, see
|
The e.c.d.f. (empirical cumulative distribution function) Fn is a step function with jumps i/n at observation values, where i is the number of tied observations at that value. Missing values are ignored.
For observations
x
= (x1,x2, ... xn),
Fn is the fraction of observations less or equal to t,
i.e.,
Fn(t) = #{xi <= t}/n = 1/n sum(i=1,n) Indicator(xi <= t).
The function plot.ecdf
which implements the plot
method for ecdf
objects, is implemented via a call to
plot.stepfun
; see its documentation.
For ecdf
, a function of class "ecdf"
, inheriting from the
"stepfun"
class, and hence inheriting a
knots()
method.
For the summary
method, a summary of the knots of object
with a "header"
attribute.
The quantile(obj, ...)
method computes the same quantiles as
quantile(x, ...)
would where x
is the original sample.
Martin Maechler, maechler@stat.math.ethz.ch.
Corrections by R-core.
stepfun
, the more general class of step functions,
approxfun
and splinefun
.
##-- Simple didactical ecdf example : x <- rnorm(12) Fn <- ecdf(x) Fn # a *function* Fn(x) # returns the percentiles for x tt <- seq(-2,2, by = 0.1) 12 * Fn(tt) # Fn is a 'simple' function {with values k/12} summary(Fn) ##--> see below for graphics knots(Fn)# the unique data values {12 of them if there were no ties} y <- round(rnorm(12),1); y[3] <- y[1] Fn12 <- ecdf(y) Fn12 knots(Fn12)# unique values (always less than 12!) summary(Fn12) summary.stepfun(Fn12) ## Advanced: What's inside the function closure? print(ls.Fn12 <- ls(environment(Fn12))) ##[1] "f" "method" "n" "x" "y" "yleft" "yright" utils::ls.str(environment(Fn12)) stopifnot(all.equal(quantile(Fn12), quantile(y))) ###----------------- Plotting -------------------------- require(graphics) op <- par(mfrow=c(3,1), mgp=c(1.5, 0.8,0), mar= .1+c(3,3,2,1)) F10 <- ecdf(rnorm(10)) summary(F10) plot(F10) plot(F10, verticals= TRUE, do.points = FALSE) plot(Fn12 , lwd = 2) ; mtext("lwd = 2", adj=1) xx <- unique(sort(c(seq(-3, 2, length=201), knots(Fn12)))) lines(xx, Fn12(xx), col='blue') abline(v=knots(Fn12),lty=2,col='gray70') plot(xx, Fn12(xx), type='o', cex=.1)#- plot.default {ugly} plot(Fn12, col.hor='red', add= TRUE) #- plot method abline(v=knots(Fn12),lty=2,col='gray70') ## luxury plot plot(Fn12, verticals=TRUE, col.points='blue', col.hor='red', col.vert='bisque') ##-- this works too (automatic call to ecdf(.)): plot.ecdf(rnorm(24)) title("via simple plot.ecdf(x)", adj=1) par(op)