| ls.diag {stats} | R Documentation | 
lsfit Regression ResultsComputes basic statistics, including standard errors, t- and p-values for the regression coefficients.
ls.diag(ls.out)
ls.out | 
 Typically the result of   | 
A list with the following numeric components.
std.dev | 
 The standard deviation of the errors, an estimate of σ.  | 
hat | 
 diagonal entries h_{ii} of the hat matrix H  | 
std.res | 
 standardized residuals  | 
stud.res | 
 studentized residuals  | 
cooks | 
 Cook's distances  | 
dfits | 
 DFITS statistics  | 
correlation | 
 correlation matrix  | 
std.err | 
 standard errors of the regression coefficients  | 
cov.scaled | 
 Scaled covariance matrix of the coefficients  | 
cov.unscaled | 
 Unscaled covariance matrix of the coefficients  | 
Belsley, D. A., Kuh, E. and Welsch, R. E. (1980) Regression Diagnostics. New York: Wiley.
hat for the hat matrix diagonals,
ls.print,
lm.influence, summary.lm,
anova.
##-- Using the same data as the lm(.) example: lsD9 <- lsfit(x = as.numeric(gl(2, 10, 20)), y = weight) dlsD9 <- ls.diag(lsD9) utils::str(dlsD9, give.attr=FALSE) abs(1 - sum(dlsD9$hat) / 2) < 10*.Machine$double.eps # sum(h.ii) = p plot(dlsD9$hat, dlsD9$stud.res, xlim=c(0,0.11)) abline(h = 0, lty = 2, col = "lightgray")