| xtabs {stats} | R Documentation | 
Create a contingency table (optionally a sparse matrix) from cross-classifying factors, usually contained in a data frame, using a formula interface.
xtabs(formula = ~., data = parent.frame(), subset, sparse = FALSE,
      na.action, exclude = c(NA, NaN), drop.unused.levels = FALSE)
formula | 
 a formula object with the cross-classifying variables
(separated by   | 
data | 
 an optional matrix or data frame (or similar: see
  | 
subset | 
 an optional vector specifying a subset of observations to be used.  | 
sparse | 
 logical specifying if the result should be a
sparse matrix, i.e., inheriting from
  | 
na.action | 
 a function which indicates what should happen when
the data contain   | 
exclude | 
 a vector of values to be excluded when forming the set of levels of the classifying factors.  | 
drop.unused.levels | 
 a logical indicating whether to drop unused
levels in the classifying factors.  If this is   | 
There is a summary method for contingency table objects created
by table or xtabs(*, sparse=FALSE), which gives basic
information and performs a chi-squared test for independence of
factors (note that the function chisq.test currently
only handles 2-d tables).
If a left hand side is given in formula, its entries are simply
summed over the cells corresponding to the right hand side; this also
works if the lhs does not give counts.
By default, when sparse=FALSE,
a contingency table in array representation of S3 class c("xtabs",
    "table"), with a "call" attribute storing the matched call.
When sparse=TRUE, a sparse numeric matrix, specifically an
object of S4 class 
dgTMatrix from package
Matrix.
table for traditional cross-tabulation, and
as.data.frame.table which is the inverse operation of
xtabs (see the DF example below).
sparseMatrix on sparse
matrices in package Matrix.
## 'esoph' has the frequencies of cases and controls for all levels of
## the variables 'agegp', 'alcgp', and 'tobgp'.
xtabs(cbind(ncases, ncontrols) ~ ., data = esoph)
## Output is not really helpful ... flat tables are better:
ftable(xtabs(cbind(ncases, ncontrols) ~ ., data = esoph))
## In particular if we have fewer factors ...
ftable(xtabs(cbind(ncases, ncontrols) ~ agegp, data = esoph))
## This is already a contingency table in array form.
DF <- as.data.frame(UCBAdmissions)
## Now 'DF' is a data frame with a grid of the factors and the counts
## in variable 'Freq'.
DF
## Nice for taking margins ...
xtabs(Freq ~ Gender + Admit, DF)
## And for testing independence ...
summary(xtabs(Freq ~ ., DF))
## Create a nice display for the warp break data.
warpbreaks$replicate <- rep(1:9, len = 54)
ftable(xtabs(breaks ~ wool + tension + replicate, data = warpbreaks))
### ---- Sparse Examples ----
if(require("Matrix")) {
 ## similar to "nlme"s  'ergoStool' :
 d.ergo <- data.frame(Type = paste("T", rep(1:4, 9*4), sep=""),
                      Subj = gl(9,4, 36*4))
 print(xtabs(~ Type + Subj, data=d.ergo)) # 4 replicates each
 set.seed(15) # a subset of cases:
 print(xtabs(~ Type + Subj, data=d.ergo[sample(36, 10),], sparse=TRUE))
 ## Hypothetical two level setup:
 inner <- factor(sample(letters[1:25], 100, replace = TRUE))
 inout <- factor(sample(LETTERS[1:5], 25, replace = TRUE))
 fr <- data.frame(inner = inner, outer = inout[as.integer(inner)])
 print(xtabs(~ inner + outer, fr, sparse = TRUE))
}