| predict.survreg {survival} | R Documentation | 
Predicted values for a survreg object 
## S3 method for class 'survreg'
predict(object, newdata,  
type=c("response", "link", "lp", "linear", "terms", "quantile",  
	"uquantile"),
 se.fit=FALSE, terms=NULL, p=c(0.1, 0.9), na.action=na.pass, ...)
object | 
 result of a model fit using the   | 
newdata | 
 data for prediction. If absent predictions are for the subjects used in the original fit.  | 
type | 
 the type of predicted value.  
This can be on the original scale of the data (response), 
the linear predictor (  | 
se.fit | 
 if   | 
terms | 
 subset of terms.  The default for residual type   | 
p | 
 vector of percentiles. This is used only for quantile predictions.  | 
na.action | 
 applies only when the   | 
... | 
 for future methods  | 
a vector or matrix of predicted values.
Escobar and Meeker (1992). Assessing influence in regression analysis with censored data. Biometrics, 48, 507-528.
# Draw figure 1 from Escobar and Meeker
fit <- survreg(Surv(time,status) ~ age + age^2, data=stanford2, 
	dist='lognormal') 
plot(stanford2$age, stanford2$time, xlab='Age', ylab='Days', 
	xlim=c(0,65), ylim=c(.01, 10^6), log='y') 
pred <- predict(fit, newdata=list(age=1:65), type='quantile', 
	         p=c(.1, .5, .9)) 
matlines(1:65, pred, lty=c(2,1,2), col=1) 
# Predicted Weibull survival curve for a lung cancer subject with
#  ECOG score of 2
lfit <- survreg(Surv(time, status) ~ ph.ecog, data=lung)
pct <- 1:98/100   # The 100th percentile of predicted survival is at +infinity
ptime <- predict(lfit, newdata=data.frame(ph.ecog=2), type='quantile',
                 p=pct, se=TRUE)
matplot(cbind(ptime$fit, ptime$fit + 2*ptime$se.fit,
                         ptime$fit - 2*ptime$se.fit)/30.5, 1-pct,
        xlab="Months", ylab="Survival", type='l', lty=c(1,2,2), col=1)