na.approx {zoo} | R Documentation |
Generic functions for replacing each NA
with interpolated
values.
na.approx(object, ...) ## S3 method for class 'zoo' na.approx(object, x = index(object), xout, ..., na.rm = TRUE, along) ## S3 method for class 'zooreg' na.approx(object, ...) ## S3 method for class 'ts' na.approx(object, ...) ## Default S3 method: na.approx(object, x = index(object), xout, ..., na.rm = TRUE, maxgap = Inf, along) na.spline(object, ...) ## S3 method for class 'zoo' na.spline(object, x = index(object), xout, ..., na.rm = TRUE, along) ## S3 method for class 'zooreg' na.spline(object, ...) ## S3 method for class 'ts' na.spline(object, ...) ## Default S3 method: na.spline(object, x = index(object), xout, ..., na.rm = TRUE, maxgap = Inf, along)
object |
object in which |
x, xout |
Variables to be used for interpolation as in |
na.rm |
logical. Should leading |
maxgap |
maximum number of consecutive |
along |
deprecated. |
... |
further arguments passed to methods. The |
Missing values (NA
s) are replaced by linear interpolation via
approx
or cubic spline interpolation via spline
,
respectively.
It can also be used for series disaggregation by specifying xout
.
By default the index associated with object
is used
for interpolation. Note, that if this calls index.default
this gives an equidistant spacing 1:NROW(object)
. If object
is a matrix or data.frame, the interpolation is done separately for
each column.
If obj
is a plain vector then na.approx(obj, x, y, xout, ...)
returns approx(x = x[!na], y = coredata(obj)[!na], xout = xout, ...)
(where na
indicates observations with NA
) such that xout
defaults to x
.
If obj
is a zoo
, zooreg
or ts
object its
coredata
value is processed as described and its time index is xout
if
specified and index(obj)
otherwise. If obj
is two dimensional
then the above is applied to each column separately. For examples, see below.
If obj
has more than one column, the above strategy is applied to
each column.
An object of similar structure as object
with (internal) NA
s
replaced by interpolation. Leading or trailing NA
s are omitted if
na.rm = TRUE
or not replaced if na.rm = FALSE
.
zoo
, approx
, na.contiguous
,
na.locf
, na.omit
, na.trim
, spline
,
stinterp
z <- zoo(c(2, NA, 1, 4, 5, 2), c(1, 3, 4, 6, 7, 8)) ## use underlying time scale for interpolation na.approx(z) ## use equidistant spacing na.approx(z, 1:6) # with and without na.rm = FALSE zz <- c(NA, 9, 3, NA, 3, 2) na.approx(zz, na.rm = FALSE) na.approx(zz) d0 <- as.Date("2000-01-01") z <- zoo(c(11, NA, 13, NA, 15, NA), d0 + 1:6) # NA fill, drop or keep leading/trailing NAs na.approx(z) na.approx(z, na.rm = FALSE) # extrapolate to point outside of range of time points # (a) drop NA, (b) keep NA, (c) extrapolate using rule = 2 from approx() na.approx(z, xout = d0 + 7) na.approx(z, xout = d0 + 7, na.rm = FALSE) na.approx(z, xout = d0 + 7, rule = 2) # use splines - extrapolation handled differently z <- zoo(c(11, NA, 13, NA, 15, NA), d0 + 1:6) na.spline(z) na.spline(z, na.rm = FALSE) na.spline(z, xout = d0 + 1:6) na.spline(z, xout = d0 + 2:5) na.spline(z, xout = d0 + 7) na.spline(z, xout = d0 + 7, na.rm = FALSE) ## using na.approx for disaggregation zy <- zoo(1:3, 2000:2001) # yearly to monthly series zmo <- na.approx(zy, xout = as.yearmon(2000+0:13/12)) zmo # monthly to daily series sq <- seq(as.Date(start(zmo)), as.Date(end(zmo), frac = 1), by = "day") zd <- na.approx(zmo, x = as.Date, xout = sq) head(zd) # weekly to daily series zww <- zoo(1:3, as.Date("2001-01-01") + seq(0, length = 3, by = 7)) zww zdd <- na.approx(zww, xout = seq(start(zww), end(zww), by = "day")) zdd # The lines do not show up because of the NAs plot(cbind(z, z), type = "b", screen = 1) # use na.approx to force lines to appear plot(cbind(z, na.approx(z)), type = "b", screen = 1) # Workaround where less than 2 NAs can appear in a column za <- zoo(cbind(1:5, NA, c(1:3, NA, 5), NA)); za ix <- colSums(!is.na(za)) > 0 za[, ix] <- na.approx(za[, ix]); za # using na.approx to create regularly spaced series # z has points at 10, 20 and 40 minutes while output also has a point at 30 if(require("chron")) { tt <- as.chron("2000-01-01 10:00:00") + c(1, 2, 4) * as.numeric(times("00:10:00")) z <- zoo(1:3, tt) tseq <- seq(start(z), end(z), by = times("00:10:00")) na.approx(z, xout = tseq) }